
© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 0

Modeling, Meta-Modeling, Hybrid Wikis

Dr. Sabine Buckl, LeanIT42 GmbH

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 1

Learning objectives of this unit

•  Students
•  know the basic principles of conceptual modeling
•  can distinguish between describing and designing models and

know their corresponding quality criteria
•  are able to structure a modeling language into its constituents and

know different methods for describing these constituents
•  can explain the fundamentals of UML MOF
•  are able to derive the information model from a specific viewpoint
•  can apply different techniques to develop an organization-specific

information model

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 2

Outline of this unit

•  3.1 An introduction to conceptual modeling
•  Models in context
•  Modeling languages and meta-models

•  3.2 EA Modeling
•  3.3 Collaborative, emergent EA modeling

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 3

Motivating example (1)

•  Reality is often too complex to model or comprehend it.
–  Task: How do I get from FMI in Garching to the Marienplatz

with the public transport system of the MVV?

Source: Google Earth

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 4

Motivating example (2)

•  Questions
–  Do I have to know where a traffic light is?
–  Do I have to know where a tree stands?

•  Result is abstraction and reduction
–  The model has to contain the important information for the

user.
•  Model

–  Plan of the public
transport system of
the MVV

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 5

Key characteristics of a (representing) model
according to Stachowiak [St73]

•  Models are always models of something, namely surrogates or
representations of natural or artificial originals, which can be models
themselves.
(engl. Mapping – dt. Abbildungsmerkmal)

•  Models commonly do not capture all attributes of their corresponding original,
but only those, which seem to be relevant for the model creator and/or model
user. (engl. Abstraction – dt. Verkürzungsmerkmal)

•  Models are no 1:1 copies of their originals, they are surrogates for the original
•  for certain – cognitive and/or acting, model using – subjects,
•  within given time intervals and
•  under constraints to certain mental or real operations.
(engl. Pragmatics – dt. Pragmatisches Merkmal)

•  But: Models may refer to yet not built originals, i.e. may be design models.
•  è Slightly different definition of model

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 6

Motivating example (ctd.) – Two more models of
the MVV public transport system

•  Model 2 (Timetable):
•  Different selection of attributes – arrival and

transport times
•  Similar model pragmatics:

–  Users that want to get via MVV from FMI
to Marienplatz

–  in the year 2014

•  Model 3 (Spatial plan):
•  Different selection of attributes – spatial info
•  Different model pragmatics:

–  Users that want to perform urban planning
–  in the year 2014

è Make-up of the models depends on its users (stakeholders).
è Users might combine different models to a view.

Source: MVV

Source: Stadt München

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 7

A model?

•  Questions:
•  Who is the intended user of the visualization? (Stakeholder)
•  What do the rectangles and colors mean? (Viewpoint)

•  Anecdote:
„These pictures are meant to entertain you. There is no significant
meaning to the arrows between the boxes.“

Database
Business

logic

P
re

se
nt

at
io

n
co

re

X
M

L
cr

ea
to

r

Core JSP

XSL
Transformer

Client

Client

Client

Web application

JDBC

Mod1

Mod2

Mod9

[Cle03]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 8

Reality

What makes a (representing) model a good
one? – Conceptions of model quality [Gu01] (1)

•  Connecting model and modeled domain – representation and interpretation
•  Lucidity (dt. Klarheit): Every construct in the model must represent at

most one object from the modeled domain. Overloaded model constructs
are forbidden. (injective representation)

•  Soundness (dt. Triftigkeit): Every construct in the model must represent
at least one object from the modeled domain. Construct excess in the
representation is avoided. (surjective representation)

•  Laconicity (dt. Prägnanz): Every object from the modeled domain must
“interpret” at most one construct in the model. Construct redundancy is
forbidden. (injective interpretation)

•  Completeness (dt. Vollständigkeit): Every object in the modeled domain
must “interpret” at least one construct in the model. Model completeness
is ensured. (surjective interpretation)

Modeled
domain Model

Representation

Interpretation

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 9

What makes a (design) model a good one?
Conceptions of model quality [Kr02] (2)

•  Different types of model quality for the model in usage context [
•  Semantic quality: Does the model

cover the modeled domain?
•  Pragmatic quality: Can the model

be interpreted by the model users?
•  Physical quality: Does the model

capture the modeler’s domain
knowledge?

•  Perceived semantic quality: Does
the model correspond to the users’
knowledge about the domain?

•  Social quality: Does the model facilitate user discussions on the
domain?

•  Tool quality: Can the model be “interpreted” by a modeling tool?
•  Syntactic quality: Does the model conform to a modeling language?

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 10

Outline of this unit

•  3.1 An introduction to conceptual modeling
•  Models in context
•  Modeling languages and meta-models

•  3.2 EA Modeling
•  3.3 Collaborative, emergent EA modeling

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 11

Every model has a modeling language

•  Main parts of a modeling language [Kü04]:
•  Syntax: Describes the set of language concepts and their

relationships to each other as well as the rules for forming correct
models.

•  Notation: Describes the representation of the language concepts
(may be graphically or textually).

•  Semantics: Describes the meaning of the language concepts
and of their relationships.

•  A modeling language
•  incorporates domain knowledge,
•  reifies the substantial laws of the domain, and
•  determines what a valid model is.

•  But: Not all valid models are sensible models, too.

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 12

Different ways of defining the syntax (1)

Grammar-based: a grammar describes how to get from a correct simpler
language element to a more complex one
For textual languages: semi-Thue system and term rewriting systems,
e.g. (Extended) Backus-Naur-Form (BNF)

•  For graphical languages: graph rewriting systems
•  Advantages:

–  easy to use
–  easy to implement in a tool

•  Disadvantages:
–  grammar rules do not necessarily reflect domain concepts
–  hardly used and taught for conceptual models

•  For our example:

Station Station Station Line

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 13

Different ways of defining the syntax (2)

•  Meta model-based: a model of higher abstractness, the meta model,
describes the language elements and their intended relationships

•  For object-oriented languages: MOF, UML
•  For general knowledge representations: RDF, OWL
•  Advantages:

–  meta model concepts reflect domain concepts
–  widely used and taught in conceptual modeling

•  Disadvantages:
–  meta model is expressed in (another) modeling language

à infinite regress
–  meta modeling language influences conceptualization of

domain

•  For our example:

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 14

Modeling language syntax and model

•  Syntax has two main functions:
•  Specify the admissible model constructs
•  Impose rules how the constructs can be combined

•  A model can comply with a syntax on different levels:
•  “Nonsense” – does not (only) use the admissible constructs
•  “Gibberish” – uses the admissible constructs but does not comply with the

rules
•  “Unintended models – uses the constructs, complies with the rules, but does

not correspond to a sensible reality
•  “Intended models” – uses the constructs, complies with the rules, and is

sensible

•  Language expressiveness may not be sufficient to avoid unintended
models:
è  Contextual grammar rules in grammar-based language specifications
è  Constraints on meta-level in meta-model based language specifications

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 15

Different ways of defining semantics

•  Textually: language concepts are provided informal descriptions
of their meanings

•  Denotational: language concepts are mapped to mathematical
concepts, e.g. sets or groups, with well-founded semantics

•  Algebraic: language concepts form elements and operators in an
algebraic structure

•  (Operational: language concepts are operationalized via code-
fragments)

•  (Axiomatic: language concepts are complemented with logical
pre- and post-conditions)

è For enterprise architecture modeling the first three ways are

applicable
è Different ways are helpful for different utilization contexts

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 16

Different ways of defining notations

•  Definition by example
•  exemplary graphical symbols representing the modeling concepts
•  rules for adapting the symbols according to concept’s properties

are either
–  not given (static symbols) or
–  given textually (dynamic symbols).

•  Definition by transformation
•  transformation rules translate from modeling concepts to

graphical symbols
•  strongly dependent on the expressiveness of the graphical

language
–  nodes and edges visualizations (see e.g. [DV02])
–  charts and diagrams visualizations (see e.g. eclipse BIRT)
–  hierarchies, nodes and edges visualizations (see e.g. eclipse GMF)
–  visualizations with complex relative positioning (see e.g. [Er06])

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 17

Object-oriented modeling – UML and MOF

•  Development of MOF (Meta Object Facility) by the OMG was
heavily influenced by the evolution of UML and the appearance
of MDA (Model Driven Architecture)

•  4-layer architecture

–  Instantiation is used repeatedly
➨ M3-, M2-, M1-, M0-layer

–  MOF on M3 layer
➨ “hard-wired” meta-metamodel

•  MOF does not “only” define the syntax
–  Possible forms of notations: MOF-Notation (~class diagram)
–  Restrictions define guidelines for the models

•  Notation is defined by example
–  Through notation tables
–  Possible notation options with natural language

•  Semantics is described in natural language
–  Additional semantic variations are defined

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 18

Language architecture of UML 2.4
4 layer architecture

MOF:Class

Attribute Class InstanceSpecificaton

WebApp IT-UA

:lecture
MOF:Class

lecture
+title:String

M3
(MOF)

M2
(UML)

M1
(a Model)

M0
(runtime instances)

<<instanceOf>> <<instanceOf>>

<<instanceOf>> <<instanceOf>>

<<snapshot>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

classifier

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 19

Language architecture of UML and MOF –
Constraints

•  The UML and MOF support the utilization of constraints
•  Constraints are specified textually

–  using natural language
–  using mathematical terms
–  using the Object Constraint Language (OCL)

•  Example (M1): any project must start before it ends

•  Example (M2): all properties must have unique names

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 20

What UML is…
Different Diagram Types

UML Diagrams
Structure Diagram Behavior Diagram

Interaction Diagram
Class Diagram Use Case Diagram Sequence Diagram
Package Diagram Activity Diagram Communication

Diagram
Object Diagram State Machine Diagram Timing Diagram
Composite Structure
Diagram

Interaction Overview
Diagram

Component Diagram
Distribution Diagram
Profile Diagram

[Quelle: Anecon – UML for (Enterprise) Architects]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 21

What UML is not

UML is ...
•  not perfect
•  not complete
•  not a programming language
•  not a real formal language
•  not specialized on a specific application domain
•  not a complete surrogate for textual descriptions
•  not a method

[Quelle: Anecon – UML for (Enterprise) Architects]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 22

Popular for Specification in OO Projects

UML Diagrams
Structure Diagram Behavior Diagram

Interaction Diagram
Class Diagram Use Case Diagram Sequence Diagram
Package Diagram Activity Diagram Communication

Diagram
Object Diagram State Machine Diagram Timing Diagram
Composite Structure
Diagram

Interaction Overview
Diagram

Component Diagram
Distribution Diagram
Profile Diagram

[Quelle: Anecon – UML for (Enterprise) Architects]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 23

Diagrams also useful in
Requirements Capturing

UML Diagrams
Structure Diagram Behavior Diagram

Interaction Diagram
Class Diagram Use Case Diagram Sequence Diagram
Package Diagram Activity Diagram Communication

Diagram
Object Diagram State Machine Diagram Timing Diagram
Composite Structure
Diagram

Interaction Overview
Diagram

Component Diagram
Distribution Diagram
Profile Diagram

[Quelle: Anecon – UML for (Enterprise) Architects]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 24

Diagrams important for
Solution Architects & Enterprise Architects

UML Diagrams
Structure Diagram Behavior Diagram

Interaction Diagram
Class Diagram Use Case Diagram Sequence Diagram
Package Diagram Activity Diagram Communication

Diagram
Object Diagram State Machine Diagram Timing Diagram
Composite Structure
Diagram

Interaction Overview
Diagram

Component Diagram
Distribution Diagram
Profile Diagram

[Quelle: Anecon – UML for (Enterprise) Architects]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 25

Issue: Business Process Modeling is not
contained in UML

„Everybody“ needs Business Process Modeling – but it’s not
contained in UML.
Two Possibilities
•  Use Activity Diagrams plus a convention
•  Use a UML Tool that also integrates BPMN (very popular:

Sparx Enterprise Architect)

[Quelle: Anecon – UML for (Enterprise) Architects]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 26

Sample: Activity Diagrams used for Business
Process Modeling

Image Source: IBM “Activity Diagrams – What they are and how to use them”
http://www.ibm.com/developerworks/rational/library/2802.html

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 27

BPMN has more sophisticated modeling
constructs for processes than UML activity
diagrams

Image Source – www.process-modeling.com

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 28

Conceptual modeling beyond UML –
Challenges of EA modeling

•  Relevant meta-properties for types:
•  Notion of rigidity: rigid, anti-rigid, and semi-rigid:

–  any instance of a rigid type remains an instance of that type
over its entire lifetime – example rigid type human

–  any instance of an anti-rigid type has not always been or will
not forever be an instance of that type – example anti-rigid
type baby

–  some instances of a semi-rigid type may forever be or have
always been an instance of that type, while others not –
example semi-rigid type rich person

•  Versioning
•  Ordering
•  Hierarchical

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 29

Outline of this unit

•  3.1 An introduction to conceptual modeling
•  Models in context
•  Modeling languages and meta-models

•  3.2 EA Modeling
•  3.3 Collaborative, emergent EA modeling

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 30

•  Process owner
•  View:

Multiple EA modeling languages – example

•  Project manager
•  View:

Subsidiary
Munich

Subsidiary
London

SAP (358)

SAP (405)

L&L (40)

SAP v3.58 SAP v4.05 L&L 4.0

Subsidiary
Munich X X

Subsidiary
London X

Acquisi-
tion Purchase

A B (1) Application „B“
 with Id 1

Business
Process „A“ C Org. Unit „C“

Legend

A B

„A“ is predecessor
of „B“

A

C B (1)
„B (1)“ supports „A“

at „C“

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 31

•  View:

•  Information model:

<to be completed in the lecture>

An information model can be derived from a
view

Subsidiary
Munich

Subsidiary
London

SAP (358)

SAP (405)

L&L (40)

Acquisi-
tion Purchase A B (1) Application „B“

 with Id 1
Business

Process „A“

C Org. Unit „C“

Legend

A B

„A“ is predecessor
of „B“

A

C B (1)

„B (1)“
supports
 „A“ at „C“

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 32

Discussion of information model variants

•  Can this information
model be used for a
process support map?

•  If not, why?
•  If yes, what would be advantages/

disadvantages of this map?

•  Can this information
model be used for a
process support map?

•  If not, why?
•  If yes, what would be advantages/

disadvantages of this map?

Organization
al Unit

name:String

Business
Process

name:String

Business
Application

name:String

Support
Relationship

*

*
*

1

1

1

for

with

at

Organization
al Unit

name:String

Business
Process

name:String

Business
Application

name:String

*

*

*

*

used at

uses

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 33

•  View:

•  Information model:

An information model can be derived from a
view

Subsidiary
Munich

Subsidiary
London

SAP (358)

L&L (40)

L&L (40)

Acquisi-
tion Purchase A B (1) Application „B“

 with Id 1
Business

Process „A“

C Org. Unit „C“

Legend

A B

„A“ is predecessor
of „B“

A

C B (1)

„B (1)“
supports
 „A“ at „C“

Organization
al Unit

name:String

Business
Process

name:String

Business
Application

name:String
id: String

Support
Relationship

*

*
*

1

1

1

for

with

at

precedes

*

*

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 34

Der Fachlicher Bezugsrahmen bestimmt das
Metamodell

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 35

Outline of this unit

•  3.1 An introduction to conceptual modeling
•  Models in context
•  Modeling languages and meta-models

•  3.2 EA Modeling
•  3.3 Collaborative, emergent EA modeling

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 36

Challenges in EA modeling

•  Emerging EA management initiatives often start informal using
spreadsheets or text documents since

–  the development of an information model is a labor intensive task
and

–  no widely-accepted standard information model exists.
•  With the growing complexity of the management body and the rising

number of stakeholders involved, problems arise regarding
–  scalability and
–  collaborative work.

•  Introducing an EA management tool is often regarded to solve these
problems.

èHow to support an evolutionary approach to EA development (esp.

regarding the design of an enterprise-specific information model)?
èHow to avoid the ivory tower syndrome?

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 37

Extending wikis with templates to support
structured content

•  Automated data processing and visualization, which are
essential in an EA management context impose
additional requirements on data representation.
 è capture data in a structured form

•  Existing wikis rely on text formatting conventions to
express structure (e.g. www.wikipedia.org, cf. Figure),
but do not offer
native support of automated data processing.

•  Semantic wikis (e.g. http://semantic-mediawiki.org),
try to exploit complex semantic web technologies but
often lack usability.

•  Our approach: templates provide a simple extendable
table containing attributes, textual values, and links.

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 38

Capture non-structured and structured
information in a unified way.

Types (0..m)

Non-rigid
attribute list

Inverse links

Attribute
suggestions

Attributes defined
for this type

Non-structured
information [Ne12]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 39

Change information and its structure any time

Multi-valued
& ordered

Suggestions
based on content

Suggestions
based on type(s)

[Ne12]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 40

Manage the evolution of the information
structures to match changing business needs.

At least one value should be defined.

Export to Excel

Constraint
violated

In-place editing

Constraints for
attribute

[Ne12]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 41

Define the information model and its constraints
incrementally (top-down or bottom up).

Rename &
merge attributes

Referential
integrity

[Ne12]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 42

Identify, understand, and cooperatively resolve
constraint violations.

At least one value should be defined.

[Ne12]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 43

Search by full text, tags, attributes and other
relevant facets in combination.

Search for
broken links

Store searches
for re-use

[Ne12]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 44

Use generated lists, tables and diagrams to
provide stakeholder-specific views.

Which business application uses
which technology?

Which organizational unit is
responsible for which business

application?

Link to detailed
information

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 45

Use generated lists, tables and diagrams to
provide stakeholder-specific views.

What are our domains, subdomains
and business applications? What information dependencies

exist for the data warehouse?

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 46

Schema

1 * Contact

<<enum>>
Position

{Professor,Assistant}

Research Project

Acronym:String
Project start:Date

Staff

E-Mail:String
Position:Position

Tailors

Data

Authors

The principle behind hybrid wikis – Data first,
schema second

[For more details see www.infoasset.de]

© 2007 – 2014 Sabine Buckl & Wolfgang W. Keller - all rights reserved 47

Bibliography

[Cle03] Clemens, P. et al.: Documenting Software Architectures: Views and Beyond,
 Addison-Wesley, 2003.

[DV02] Domokos, Varro.: An open visualization framework for metamodel-based
 modeling languages. Electronic Notes in Theoretical Computer Science, 72(2),
 2002.

[Er06] Ernst, A. et al.: Using model transformation for generating visualizations from
 repository contents – an application to software cartography. Technical report,
 Technische Universität München, Chair for Informatics 19 (sebis), Munich,
 Germany, 2006.

[Gu05] Guizzardi, G.: Ontological foundations for structural conceptual models. PhD
 thesis, CTIT, Centre for Telematics and Information Technology, Enschede,
 The Netherlands, 2005.

[Hi05] Hitz, M. et al: UML@Work. 3rd edition, dpunkt.verlag, Heidelberg, 2005.
[Kr02] Krogstie, J.: A semiotic approach to quality in requirements specifications.

 In: Proceedings of the IFIP TC8 / WG8.1 Working Conference on
 Organizational Semiotics: Evolving a Science of Information Systems,
 Deventer, The Netherlands, Kluwer, B.V. pp. 231-249, 2002.

[Kü04] Kühn, H.: Methodenintegration im Business Engineering, Dissertation, Wien, 2004
[Ne12] Neubert ,C.: Facilitating Emergent and Adaptive Information Structures in

 Enterprise 2.0 Platforms. PhD Thesis, Technische Universität München.
[St73] Stachowiak, H.: Allgemeine Modelltheorie, Springer, 1973.

